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Abstract
Today’s federated network testbeds enable experiments of
unprecedented scale and detail, but only provide rudimen-
tary primitives to capture an experiment’s network traffic.
Capturing and analyzing traffic is important for diagnosing
and debugging research prototypes and for evaluating re-
search, but today’s testbed users divert and duplicate effort
to craft custom solutions for their experiments. Building a
general, reusable system is made more challenging by the
autonomous structure of federated testbeds and by their high
capacity links (requiring accelerated processing).

This paper describes the design, implementation, and eval-
uation of Patchwork: a user-provided, open-source, capture
and analysis platform that runs on the state-of-the-art FAB-
RIC testbed. Patchwork works both for individual experi-
ments and also for all experiments occurring simultaneously
on FABRIC. To attain a general design, Patchwork itself runs
as an experiment on FABRIC and did not require modifica-
tions to FABRIC. For scalability, Patchwork offloads logic to
FPGA NICs on the testbed and uses DPDK. Patchwork has
been used by individual FABRIC users and has been running
on FABRIC for over a year to produce a testbed-wide anal-
ysis of how researchers are collectively using the testbed’s
network. This paper also presents that analysis and discusses
implications for future research on measurement.
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1 Introduction
“The ARPANET began operation in 1969 with four nodes as an
experiment in resource sharing among computers.”

Denning [21]

Shared network testbeds are important platforms for eval-
uating research ideas at scales that exceed what a typical
university testbed provides [11, 17, 29, 31]. Successive gen-
erations of testbeds—such as PlanetLab [19], Emulab [42],
GENI [16], and CloudLab [37]—raised the standards for pro-
viding their users with scalable, configurable, and observable
environments for research and learning [24, 39].
FABRIC [13] is a state of the art, international network

testbed that is intended for research on high-performance
and software-defined networking. It includes terabit-scale
links [10] and researcher-programmable infrastructure [4].
FABRIC became operational in October 2023 after several
years of development.
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Providing control over experiment resources is a key fea-
ture of a network testbed, and researchers exploit this con-
trol to gather data about their experiments. For example,
researchers evaluating WAN-oriented congestion control al-
gorithms would observe completion times at hosts and buffer
utilization in switches across a wide geographical area and
under different types of transfer workloads and background
traffic. On FABRIC, such a transfer could be set up between
FABRIC sites in Amsterdam and Tokyo, and use links that
cross the Atlantic Ocean, continental US, and Pacific Ocean.

As an improvement over its predecessors, FABRIC’s Mea-
surement Framework (MF) [2] collects measurements about
the utilization of the testbed’s resources—including CPU
cores andmemory fromhosts and port counters from switches.
Continuing the previous example, MF can be used to poll the
counters of switches along the experiment’s network path.
However, there remains a need for more observability of

the network’s data plane to obtain detailed measurements
about network traffic. Continuing on the earlier example,
switch counter information is coarse—it does not distinguish
the traffic of one experiment from that of another, nor does
it provide a granular breakdown of different traffic types.
For more fine-grained data plane monitoring, FABRIC’s

API provides a port mirroring primitive that supports full
traffic capture. This low-level primitive simply clones frames
to a second switch port. Using this primitive, researchers can
sample the traffic on a subset of ports at each switch along
an experiment’s path. Using port mirroring, researchers can
obtain a traffic sample that reflects the composition of their
traffic stream. Continuing on the example, this capture allows
researchers to inspect headers to understand the behavior of
congestion control through the values of header fields.

But FABRIC’s port mirroring primitive is a building block,
not a solution. It necessitates substantial user-supplied logic
to be usable. This logic would need to handle: (1) filtering
to exclude unwanted traffic; (2) varying parameters for sam-
pling, such as sampling frequency and duration; (3) trun-
cating frames to a researcher-specified size (if researchers
wish to discard payloads); (4) scaling to line rate; (5) detect-
ing incomplete samples because of congestion in the switch.
Specifically, since port mirroring clones packets from the
Transmit (Tx) and Receive (Rx) channels of the mirrored
port to a single egress port,1 the mirroring might overflow
the egress port’s queue if “Tx rate + Rx rate > line rate”. Re-
searchers must devise a mechanism to detect or mitigate
this behavior. (6) Researchers often must carry out close-to-
source traffic processing—such as anonymization [33].

1Each FABRIC site consists of an Ethernet that uses point-to-point, duplex
links between the site’s switch and its servers. Section 3 provides more
background on FABRIC’s architecture.

It is impractical for each FABRIC user to fully implement
this logic for themself. Having a general implementation of
this logic would serve the needs of different FABRIC users.
In addition to serving individual FABRIC users, a system for
testbed traffic capture and analysis would serve the research
community collectively by (1) providing testbed-wide analy-
sis on the workloads that are utilizing the testbed’s network,
to study its current operation and investigate ideas for fu-
ture upgrades—similar to how other networks are analyzed
(Section 2)—and (2) providing anonymized samples from
the testbed. Unlike other intercontinental-scale communi-
cations infrastructure (such as private backbones, telecom
networks or inter-datacenter links) which provide infrequent
and redacted traces, federated testbeds could serve as regular
sources of high-fidelity network traces.
This paper describes Patchwork,2 a network profiler that

captures and analyzes FABRIC’s testbed traffic. Patchwork is
not part of FABRIC—it runs as an experiment. Patchworkwas
built by FABRIC users and it relies on existing FABRIC fea-
tures to provide a general, configurable, and scalable network
profiler for testbed users. For scalability, Patchwork offloads
logic to Alveo FPGA NICs in FABRIC and uses DPDK.
To our knowledge, Patchwork is the first user-deployed

extension to FABRIC. Patchwork can sample the network on
any FABRIC site and provides FABRIC users with a simple
interface for data plane observability. In addition to present-
ing Patchwork’s design, this paper also describes a profile
of FABRIC network traffic gathered using Patchwork during
FABRIC’s first year of operation (between December 2023
and December 2024). Patchwork now runs weekly to create
a profile of FABRIC’s network traffic,3 in addition to being
directly usable (at any time) by FABRIC’s users.

Summary of Findings. Section 8 details two types of find-
ings: (A) Deploying a Profiling Tool on a Shared Testbed:
(A1) The testbed’s federated structure provided a natural
decomposition for Patchwork: every site runs its own Patch-
work instance. (A2) The profiler must gracefully accommo-
date the varying number of resources that are available at
each site. Patchwork implements 3 ideas: bounded resource
usage, lowering resource requests through back-off, and us-
ing fewer NICs to capture traffic by cycling betweenmirrored
switch ports. (A3) FABRIC’s testbed resources can be used
to offer testbed extension services. Patchwork uses port mir-
roring and smart NICs to capture traffic, SNMP telemetry
to detect loss at the switch, and FPGA NICs for packet pro-
cessing. (A4) In FABRIC’s current host architecture, small
frames can sometimes be captured and processed faster than
they can be stored. (A5) The testbed is a convenient dis-
tribution platform, and it was easy for FABRIC users to

2https://packetfilters.cs.iit.edu/patchwork/
3https://packetfilters.cs.iit.edu/patchwork/dashboard/
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start using Patchwork. (B) FABRIC’s Network Profile:
(B1) FABRIC sites have diverse traffic characteristics, sug-
gesting diverse yet persistent workloads in those sites. We
hypothesize that this is because of researchers wanting to
use pools of equipment at those sites, and because of those
sites’ network connectivity—FABRIC’s sites are not identical
to each other. (B2)Most FABRIC sites exhibit a low variety
of protocols in their traffic, but some sites use many types
of protocols. (B3) FABRIC link utilization is often low, but it
sometimes spikes to capacity. Background network activity
is highly variable. We discuss how this has implications for
testbed research on high-performance networking and its
reproducibility. (B4) Following from the previous point, for
high-performance network experiments, a QoS or resource
scheduling policy will be needed to ensure faithful exper-
iment results. (B5) Jumbo frames are highly prevalent in
FABRIC’s network in contrast with other networks such as
datacenters and telecom backbones. (B6) IPv4 is the domi-
nant network protocol used on FABRIC—surprisingly, IPv6
traffic makes up less than 2% of FABRIC traffic we sampled.

Contributions. This paper contibutes the following:
• A study of FABRIC’s infrastructure and resource uti-
lization (Section 5). This study informs the design of
Patchwork but also conveys to the research commu-
nity new details about how FABRIC is used.

• Design of the Patchwork network profiler (Section 6).
• Working implementation of Patchwork (Section 7).
• A profile of network traffic gathered using Patchwork
during FABRIC’s first year of operation (Section 8).

• Patchwork’s code and documentation are freely avail-
able, and have been used outside the Patchwork team.

This paper substantially extends earlier work [40] that
described a much shorter profile of FABRIC’s network traffic
(3 weeks compared to 13 months). The earlier work did not
describe a reusable tool for other FABRIC users, and used a
software-only setup that did not scale to line rate.

2 Related Work
Compared to related work, this paper describes (1) the most
recent analysis of a shared testbed’s resources and utilization,
(2) the first network profiling tool for a federated testbed,
(3) an analysis of the network profile of FABRIC’s first year of
operation, and (4) the first user-deployed service on FABRIC
for the benefit of other researchers.
Analysis of a shared testbed’s resources and utiliza-

tion. Chun and Vahdat [20] studied the utilization of Planet-
Lab for three months in 2003, focusing on end-host resources
such as CPU load, memory, and the utilization of host net-
work interfaces (in terms of traffic sent and received over
those interfaces). Kim et al. [28] studied the utilization of
PlanetLab between 2005 and 2010. They describe the number

of slices running on PlanetLab during that period and the
slices’ utilization of CPU, memory, and network utilization
on end-hosts. More recently, Ricci et al. [36] and Hermenier
et al. [26] studied the utilization of the Emulab testbed and its
responsiveness—such as the time taken to provision experi-
ments of different sizes and that span different sites. Yi and
Fei [43] characterize the links of the GENI testbed in terms of
latency and throughput. In contrast, this paper does not fo-
cus on the responsiveness of a testbed’s infrastructure or the
types of experiments that run on it—this paper focuses on the
network dataplane of the testbed. In comparison with earlier
work, the present paper describes the design of a reusable
and scalable network monitoring tool for a federated testbed
(FABRIC), and uses that tool to study the utilization and pro-
file of the testbed’s network. Network-related data in earlier
work consisted of counter values from end-host NICs. In
contrast, this paper samples the traffic across the sites of
a federated dataplane and builds a picture of the traffic on
the network—such as the distribution of frame sizes and the
composition of flows. The INSTOOLS system by Griffioen
et al. [25] supports the flexible creation of measurement re-
sources for GENI experiments that can sample the dataplane.
In comparison, the system described in this paper can work
across all experiments currently running on the testbed (as
well as sample traffic for individual experiments), can use
heterogeneous hardware, and is able to run at line rate.
Profiling other networks. Network profiles have been

carried out for networks that form part of the Internet back-
bone [27], residential broadband access [30], campus [12],
datacenter [15, 38] and satellite networks [35]. Given the
different purposes for which networks are used, it is un-
surprising that the network profile presented in this paper
differs from that of other networks. A key, general difference
with other networks is that FABRIC’s traffic makes heavy
use of jumbo frames. It also has high traffic variation (even
across different FABRIC sites) owing to the different research
experiments that are taking place on the network.

3 Background: FABRIC Testbed
This section outlines FABRIC’s design to establish back-
ground for the sections that follow. FABRIC is structured
into a federation of sites. As a federated testbed [14], FAB-
RIC consists of racks that are embedded in the networks of
different institutions (sites). Such institutions include univer-
sities and Internet exchange points (IXPs). FABRIC racks are
managed centrally but span a wide geographical area—there
are FABRIC sites in Asia, Europe, and USA.
A FABRIC rack contains an Ethernet switch that links a

number of worker machines. Each machine hosts one or
more Virtual Machines (VMs) and is equipped with several
network interface cards (NICs). Researchers who use FABRIC
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Figure 1: Portmirroring on FABRIC. On the switch at FABRIC
Site 1, port P2 is mirrored to port P4 . Port P4 is connected to
a dedicated NIC (DN) on Worker Node 1, on which a FABRIC
user runs VM4 to receive traffic. The traffic consists of what
is being exchanged by (possibly a different FABRIC user’s)
VM1 on WN3, which is using a shared NIC (SN) to access the
network. This example is described further in Section 3.

can directly reserve VMs and NICs. In the standard termi-
nology used in network testbeds, researchers create a slice
that reserves resources for their experiments. Reservable
resources are called slivers. On FABRIC, slivers can include
VMs, different types of GPUs, Mellanox ConnectX NICs,
Alveo FPGA NICs, and Tofino switches. P4 [18] is used in
several research projects on FABRIC, often targeting DPDK,
Alveo FPGA NICs, and Tofino switches.

A FABRIC site is connected to one or more other sites
through dedicated uplink ports on that site’s switch. All links
consist of two uni-directional channels: one for transmitting
(Tx) and another for receiving (Rx) frames.

FABRIC sites differ in the types and quantities of resources
they offer. For example, FABRIC’s NCSA site has 10 single-
user ConnectX NICs, a ConnectX NIC that can be shared
among 381 users, an Alveo FPGA card, five GPUs and an
aggregate of hundreds of cores and terabytes of storage [5].
Inter-site links have different capacities, and their availability
is not guaranteed—all links are shared with other FABRIC
users, and some links are shared with non-FABRIC users.

FABRIC sites use Cisco 5700 Series or Ciena 8190 as top-of-
rack (ToR) switches. Switch configuration and query inter-
faces are abstracted by an API provided by FABRIC, which
in turn provides network configuration, port-level teleme-
try, and port mirroring functionality to FABRIC users. The
research described in this paper uses telemetry and port mir-
roring. Telemetry consists of SNMP-polled readings that are
stored in a Prometheus database and queried through the

MFlib [2] front-end API. Both SNMP and port mirroring are
commonly-supported features on managed switch platforms.

Portmirroring is an important primitive for network profil-
ing, but it is low-level and therefore requires code to manage
it. Port mirroring involves picking a ToR port and choosing
whether to mirror either or both of Rx and Tx for that port,
and which ToR port to mirror it to. The management code
must determine ports of interest (to be mirrored), allocate a
NIC and VM to received mirrored traffic, and manage those
resources for the duration of the mirroring.

Fig. 1 sketches port mirroring on FABRIC. In that example,
a FABRIC user has a slice consisting of VM1, VM2 and VM3.
In that slice, that user’s VMs are sharing NICs with other
FABRIC users. This slice is spread across two FABRIC sites,
and port P1 on Site 1 links to Site 2. A—possibly different—
FABRIC user set up port mirroring on P2 to collect traffic in
VM4 through P4. That user specifies whether to receive P2’s
Rx or Tx traffic, or both. By default, VM4 will receive copies
of all the frames that cross P2—not only those of VM2.

4 Motivation and Requirements
This section motivates this paper’s research and compiles
the requirements for a testbed network profiler. Some re-
quirements depend on prevailing usage patterns of FABRIC’s
resources. Understanding those usage patterns required car-
rying out a dedicated study. This section formulates research
questions for that study and Section 5 presents answers.

A network profile describes how a network is being used.
A profile is created by observing traffic composition over
time. It captures a range of characteristics about a network—
including header types, encapsulation patterns, and various
flow characteristics. Such characteristics include the sizes
and durations of flows, distribution of packet sizes in a flow,
and the presence of important control information (such as
RST-flagged packets in TCP flows).

Scope. A shared network research testbed is a high-churn
environment. At any one time, several researchers are start-
ing experiments while other researchers’ experiments are al-
ready running. Each experiment is likely to invoke a research
prototype. Different prototypes induce different workload
shapes over the testbed’s network. These prototypes usually
evolve to maturity over several months, during which time
their network activity can change.
Asymmetry in general profiling. Today’s network profil-

ing techniques are inadequate for shared testbed networks
because they are designed to provide information to a net-
work’s operator, not to the network’s users. Today’s approaches
include obtaining information from network switches using
standards like NetFlow, sFlow, IPFIX, and SNMP. This infor-
mation does not distinguish between testbed users and pro-
vides coarse statistics. In previous work, we set up NetFlow
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generation and collection within a single FABRIC experiment
to assess the detail we could obtain.
How is network profiling done on research testbeds today?
Testbed users typically use tcpdump to capture a packet
stream for later analysis, and possibly mutate their exper-
iment’s topology to introduce bump-in-the-wire nodes to
collect traffic. FABRIC offers a port mirroring primitive, but
this is unwieldy to use directly: the researcher must find out
which switch ports their experiment is using (potentially
at several FABRIC sites), and then set up the resources to
receive and record mirrored traffic. FABRIC also provides
a query interface to MFlib (see Section 3) which continu-
ously gathers switch information polled using SNMP from
all FABRIC switches. This provides a time-series of summary
information about the network’s state at a high level that
complements the profile from data-plane sampling.

Goal. A network profiler for a research testbed would pas-
sively gather data related to its users’ research experiments.
That data can be used to evaluate, diagnose, debug or repro-
duce testbed experiments, and to study the operation of the
testbed and carry out new research on testbeds. The testbed’s
operator can use this same profiler to help monitor their net-
work. When activated, the profiler would either monitor
a single experiment (single-experiment mode) or all ex-
periments in a site or across the testbed (all-experiment
mode),4 depending on the access tokens of the invoking user.
Testbed users cannot see the traffic of other users unless they
are granted access tokens by the operator.

Requirements and Open Questions
This section compiles a set of requirements for a testbed pro-
filer. Some requirements depend on understanding testbed
characteristics for which there is no published or public
information. A study is therefore needed to answer these
questions and complete the requirements. The study’s results
are presented in Section 5 to set context for Patchwork’s de-
sign. Requirements are labeled as (Rnumber : name) and an
open question for a requirement is labeled as (R𝑛.Q𝑚).
(R1: Resource Sensitivity and Scheduling) Should the
profiler use resources on one site to profile another site, or
should each site provide for its own profiling needs? Sites
might have different quantities of resources available—in
which case, what network ports should the profiler prior-
itize? Before picking a direction for the profiler’s design,
we must first understand FABRIC’s resources and how re-
searchers use them. (R1.Q1) What is the ratio of uplinks
to downlinks? Should we focus on sampling uplinks only,
downlinks only, or both? (R1.Q2) How distributed are users’
slices across different sites? Using a profiler requires navigat-
ing trade-offs on how to gather and process network traffic.

4An instance of the “zero-one-infinity rule” [9].

This includes deciding whether to observe all or some traffic.
And if observing only a subset of traffic, deciding on: which
specific sites to observe, which types of traffic to observe, and
at what frequency. (R1.Q3)When should the profiler sample
traffic, and for how long?
(R2: Testbed service overlay) The profiler must not require
additional resources to be added to the testbed, or changes
to the testbed’s API. Adding resources would incur cost and
management burden for the testbed’s operator. Thus, the
profiler must work within the resources that already exist on
the testbed. (R3: Resilience and Detecting Failures) The
profiler must work in a federated system and survive par-
tial outages and transient disconnections. The profiler must
therefore implement failure and recovery modes, and gather
information for diagnosing runtime problems. (R3.Q1) Based
on historical or telemetry information, should we rank sites
in terms of their likelihood of being network-active? Which
sites should we sample? (R4: Performance) The profiler
must be able to ingest a high volume of traffic from across
the federated testbed. (R4.Q1) What is the peak transmis-
sion rate across all port switches on FABRIC? (R5: Tunable
Fidelity) users of the profiler must have a simple interface
for configuring its behavior and level of detail.

5 Resource & Infrastructure Study of the
FABRIC Testbed

This section presents a study that answers the questions
from Section 4 to complete the technical requirements for
a network testbed profiler. The information for this study
came from three sources: (1) FABRIC’s information model [3]
encodes the testbed network’s topology (similar to Google’s
MALT [32]). (2) Anonymized slice creation statistics were
shared with us by the FABRIC operator. (3) Telemetry infor-
mation about every switch on the network testbed was ob-
tained by querying FABRIC’s MFlib (described in Section 3).

Uplink distribution on FABRIC. The distribution of uplinks
on FABRIC provides information about the connectedness
of each FABRIC site. In turn, that can inform decisions into
which sites to prioritize for profiling and whether to focus
on uplinks, downlinks, or both—answering (R1.Q1). We ana-
lyzed FABRIC’s information model to count ports at each site.
We found that most sites have a similar number of uplinks,
and all sites have many more downlinks than uplinks. The
results are graphed in Fig. 2. The utilization of uplinks and
downlinks depends on whether slices tend to be located in
a single site (which would utilize downlinks more) or dis-
tributed across sites (which would utilize uplinks), as asked
in (R1.Q2). This is analyzed next.

Slice activity on FABRIC. Fig. 3 answers (R1.Q2): we found
that 66.5% of slices use resources in a single site—therefore
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Figure 2: Distribution of ports across all production FABRIC
sites. Downlinked ports are connected to FABRIC servers at
the same site. Uplinked ports are connected to other FABRIC
sites’ switches.
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Figure 3: This graph shows that FABRIC slices tend to use
resources that are spread across few FABRIC sites. 66.5% of
all FABRIC slices use a single site.

the network activity of most slices is unlikely to cross the up-
links. Notwithstanding, a substantial subset of slices (43.5%)
use resources across different sites, therefore the profiler
must be able to sample both uplinks and downlinks. Precisely
which links to sample depends on the goal of the profile—
for example, we could sample links at random, or we could
concentrate on the links that have highest traffic rates. The
design must let the user of the profiler choose. From analyz-
ing slice lifetimes in Fig. 4, we see that 75% of slices last for
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Figure 4: Duration of slices on FABRIC. 75% of slices last
for 24 hours. The smoothed graph is produced using linear
interpolation after sparsing the data points.

0 50 100 150 200 250
Load (#Slices)

0

25

50

75

100

125

150

175

#H
ou

rs

Average
Load
Std Dev

Figure 5: Average number of slices on FABRIC is 85, with a
standard deviation of 52. At most, we saw 272 simultaneous
slices on FABRIC.

24 hours. Therefore in answer to (R1.Q3), in all-experiment
mode, it appears that 12-24 hours seems adequate to get a
good sample of the testbed network’s behavior. Further, in
Fig. 5 we see that FABRIC has an average of 85 slices active
at any one time, with a standard deviation of 52. Thus, the
testbed is always active—but we will soon see that it becomes
especially active in the run-up to important deadlines!

Network activity on FABRIC. Not all testbed experiments
use the network heavily. We now turn to analyzing the net-
work’s utilization in time and space. This analysis is based
on 5-minute samples of Tx and Rx rates for all switch ports
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at every FABRIC rack. We extracted time-series information
from MFlib and characterized the activity across FABRIC
switch ports. We found which ports are more active than
others, and that there are occasional workloads on FABRIC
that generate plenty of traffic both within and across sites.
Continuing on our analysis for (R1.Q3), if we cannot sample
from all ports (because insufficient resources are available to
the profiler) then the profiler must accept ordering heuristics
to avoid “starving” less-active ports. If we only sample from
the busiest ports, we might miss important traffic.
Referencing (R3.Q1): FABRIC users can choose the sites

in which to place their resources, and can choose the sites
with the lowest loads, but those sites would become more
loaded if other users also choose them. Therefore, rather
than seeking to avoid runtime problems (that are beyond our
control) it is a better policy to be able to detect them.
Fig. 6 uses the data obtained from MFlib to graph the

data-transfer activity in FABRIC’s network during most of
2024. The network’s activity peaked the week before the
Supercomputing’24 conference [6], a venue where several
FABRIC users were presenting talks and demonstrations of
their research. During that week, an average of 3.968Tbps
crossed FABRIC’s network. The main take-away for (R1.Q3)
is that the network activity appears to be correlated with key
deadlines, and we can observe a “ramp-up” period to April
and November.
Turning to (R4.Q1), we found that 50% of switch ports

have utilization ≤38%, but there are ports that run at line
rate (i.e., they are 100% utilized). It is therefore prudent to
expect to need to capture traffic at line rate.

6 Design of Patchwork
This section describes the design of Patchwork, how it meets
the requirements listed earlier, and the design’s limitations.
Patchwork is a network profiler that works across FAB-

RIC’s federation of sites. This profiler samples ports on FAB-
RIC switches and manages the entire profiling process end-
to-end. Managing the profiling process involves provisioning
testbed resources, deciding which ports to sample, and pro-
cessing and analyzing the sampled traffic.

Patchwork decouples traffic sampling from analysis. Sam-
pling and pre-processing (e.g., truncation) of traffic is done
on FABRIC. Analysis takes place outside of FABRIC, and pro-
cesses the packet captures to produce statistics and graphs.

6.1 Overview
To FABRIC, Patchwork appears like any other experiment. It
runs on FABRIC using the resources that the testbed makes
available to its users. Patchwork relies on FABRIC for access
control to the testbed’s resources. These resources include
VMs, dedicated NICs, and port mirrors. FABRIC’s access
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Figure 6: Utilization of FABRIC’s network over each week
of 2024. The gray bands are intervals for which we have no
information. Months alternate between black and white se-
quences of bars, starting with the last two weeks of February.
For each week, the y-value consists of sums of 5-minute rate
(bytes-per-second) samples from each switch port during
that week.
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Figure 7: Outline of how Patchwork works. Port cycling
changes the mirrored port while keeping fixed the NICs and
VMs. Cycled ports take turns to be sampled.

control and virtualization systems preserve the isolation
between slices, privacy of the testbed’s users and the secu-
rity of the overall system. To run in all-experiment mode, a
special, discretionary permission is required from the FAB-
RIC team. This permission allows the mirroring of traffic
that belongs to other testbed users. In Appendix A we de-
scribe the process that we followed to obtain this permission.
Patchwork’s access and use of resources is completely en-
capsulated by FABRIC’s management interfaces, and that is
how Patchwork satisfies requirement (R2: Testbed service
overlay) from Section 4.
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Patchwork creates slices on FABRIC that include VMs
for traffic gathering and pre-processing, dedicated NICs for
receiving traffic for those VMs, and uses port mirroring at
the site’s switch to direct traffic to those NICs from ports
of interest. Patchwork also uses MFlib’s switch telemetry at
runtime to detect congestion at mirrored ports, and logs this
as part of the profile.
Fig. 7 outlines Patchwork’s operation. A coordinator ➀

running outside FABRIC configures and ➁ starts Patchwork
in sites across FABRIC. If run in all-experiment mode, Patch-
work is started on all FABRIC sites; if run in single-experiment
mode, then Patchwork is started on sites on which that slice
is using resources. Within each site, Patchwork can start
fewer sampling instances than there are ports to sample. To
sample all ports of interest, Patchwork ➂ cycles between
ports to build its profile. Cycling simply changes the mirror-
ing at the switch as sketched in Fig. 7—the Patchwork VMs
P1 and P2 persist throughout the profiling. Finally, the sam-
ples are ➃ downloaded to the coordinator, then Patchwork’s
resources are ➄ yielded back to FABRIC. The workflow de-
scription below outlines the resource selection methods used
by Patchwork to meet requirement (R1: Resource Sensitivity
and Scheduling).

6.2 Patchwork’s workflow
Patchwork’s workflow is structured into four phases.

6.2.1 Setup phase. The coordinator shown in Fig. 7 deter-
mines which sites to profile and formulates a set of resources
that will be requested from the testbed to run the profiler
at those sites. In all-experiment mode, Patchwork usually
profiles all FABRIC sites but it can be focused to run on spe-
cific sites. In single-experiment mode, Patchwork is run on
the sites and slices that the FABRIC user can already access.
Within each site, the coordinator can run several Patchwork
profiling instances—the number of instances is commensu-
rate with the number of switch ports to be mirrored.
Related to (R1: Resource Sensitivity and Scheduling), for

testbed-wide profiling, Patchwork acquires asmany resources
as needed. In the default case, each Patchwork’s listening
node requests 2 CPU cores, 8GB of RAM, 100GB of storage
and 1 dedicated, dual port NIC. Of these, the most scarce
resource is the dedicated NIC since each site usually has only
around 2-6 available. Patchwork discovers the resources that
are available at each site by querying FABRIC’s APIs. Tomeet
requirement (R3: Resilience and Detecting Failures) from Sec-
tion 4, each instance of Patchwork is independent from the
others. While running, instances do not require coordination.
Patchwork uses iterative back-off during resource acquisi-
tion at each site: that is, if the requested resources are not
available, then Patchwork will scale down its request. For
example, if the site has 4 dedicated NICs available, then there

are 8 physical ports available. Thus, Patchwork can profile
8 switch ports at any given time. However, while setting
up the system, if there is no storage available, then Patch-
work will reduce its request by 1 VM and 1 dedicated NIC.
On that site, if the slice request succeeds after 2 iterative
back-offs, then Patchwork can monitor 4 switch ports (since
at each back-off, a dedicated NIC with 2 ports is reduced
from Patchwork’s request). Scaled-down operation involves
starting fewer instances that monitor the same number of
ports—trading off resources for sample quality. To meet re-
quirement (R4: Performance), Patchwork can offload opera-
tions like sampling, truncation, filtering, and pre-processing
to Alveo FPGA cards, and uses a custom DPDK application
to receive and store traffic. DPDK [22] is a framework for
running high speed networking applications on a CPU. It
bypasses the Linux network stack, and provides a user-space
library and APIs optimized for networking performance.

6.2.2 Sampling phase. During this phase, Patchwork cap-
tures traffic from mirrored ports. This capture is controlled
by user-provided parameters to meet (R5: Tunable Fidelity),
and its behavior is sketched in Fig. 8. The raw data that forms
a profile consists of traffic captures carried out during a se-
ries of runs, where each run consists of a series of samples.
The user sets the duration of each sample, number of sam-
ples in each run, and the number of runs between cycles.
The user also configures packet truncation size and capture
pre-processing—such as blanking or transforming addresses.
Frames are captured using one of three methods: (1) tcp-

dump with the capture buffer raised to 32MB, (2) a custom
DPDK application, and (3) preprocessing on an Alveo FPGA
NIC then serialization to storage by the custom DPDK appli-
cation. All three methods produce pcap files.

During the sampling phase, a watchdog process checks for
both successful and unsuccessful termination of the Patch-
work instance—e.g., in case the FABRIC VM hosting a Patch-
work instance ran out of storage. To meet (R3: Resilience and
Detecting Failures), Patchwork creates logs at every instance
to capture a variety of network- and host-related statistics
that can help users notice problems. (For example, this infor-
mation helped us notice and dismiss a quirk of how the Linux
kernel accounts for “dropped” packets when associated ker-
nel modules are missing [40].) These logs are included in the
final compressed file that is later gathered by the coordinator
for offline processing—this is shown as step ➃ in Fig. 7.

Port cycling.Tomeet (R1: Resource Sensitivity and Sched-
uling), Patchwork supports cycling between mirrored ports
in order to use fewer FABRIC resources. If we were con-
strained to only running a single Patchwork instance on a
site, then that instance could cycle between all the ports of
that site’s switch. If we could run two instances, then each
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Figure 8: Outline of Patchwork’s sampling procedure, de-
scribed in Section 6.2.2. Traffic flows to a NIC that is dedi-
cated to Patchwork through the mirrored switch port.

switch port would be twice as likely to be sampled. The cy-
cle duration and port selection method are user-supplied.
By default, Patchwork uses a “busiest ports bias, 1

𝑛
other

non-idle port” heuristic—that is, during every 𝑛 − 1 cycles it
picks a random non-idle port, and during the other cycles
it picks the busiest port that has not been sampled during
the last 𝑛 cycles. The busiest port has the highest Tx and
Rx rates during a recent (and configurable) time interval;
this information is obtained from MFlib at runtime. This
heuristic was designed to provide fair sampling across all
non-idle ports. Other selection methods Patchwork supports
include: (1) sampling fixed ports (no cycling), (2) sampling
only uplink ports, (3) cycling between all ports, including
idle ones. Users can also add their own heuristics.

Tomeet (R3: Resilience and Detecting Failures), Patchwork
detects congestion at the switch, which can lead to incom-
plete samples. That is, if bothMirrored(Tx) andMirrored(Rx)
channels are mirrored to the Patchwork(Tx) direction of an-
other switch port (to be transmitted to a dedicated NIC con-
trolled by Patchwork), then samples will be incomplete if
Mirrored(Tx) + Mirrored(Rx) exceeds the capacity of the
channel Patchwork(Tx)—that is, frameswill simply be dropped
at the switch before they are transmitted fromPatchwork(Tx).
Patchwork queries the switch for the rates of Mirrored(Tx)
and Mirrored(Rx), to infer whether frames are likely being
dropped.

6.2.3 Gathering phase. When the sampling phase ends, the
captured traffic (as pcap files) and logs are compressed and
downloaded to the coordinator as sketched in Fig. 7.

6.2.4 Analysis phase. Once downloaded, the data is pro-
cessed offline to extract high-level meaning. All the data and
graphs in Section 8.2 were produced directly by this phase.
Fig. 9 outlines the Analysis phase. The Digest step takes

raw pcap files and applies the protocol dissectors used by

Digest

csvM

{pcap1, pcap2, …pcapN}

{acap1, acap2, …acapN}

Index

idx
An

aly
ze

{analysis1, …, analysisM}

graphM statsM

Process

Render Summarize

Figure 9: Packet captures are preprocessed at source, then
put through this analysis pipeline to produce graphs and
statistics, as explained in Section 6.2.4.

Wireshark [8] to extract information about each header, dis-
carding unneeded information. Wireshark’s protocol dissec-
tors were chosen since they are mature and widely used.
Using the dissectors’ output, for each frame prefix this anal-
ysis produces an abstract stack of headers (“acap”). Since a
single profile often produces dozens of gigabytes of data, an
Index step is carried out to allow subsequent analyses tomore
quickly locate the acap files needed. The Analyze step runs
a diverse set of analyses—for example, to characterize frame
sizes, the types of headers observed in the captures, and
classify flows (represented as sequences of abstract header
stacks). Flows are classified by using the virtualization tags
(MPLS and VLAN) and network- and transport-layer fields—
thus even if the same 10/8 addresses are used in different
slices, they are treated as different flows. Timing and frame
size metadata is retained from the original pcap. From the
results of analyses, the Process step produces CSV files that
describe different aspects of the profile—such as the distribu-
tion of different types of frames across FABRIC sites, and the
composition of flows. Finally, this information is processed
by other scripts to produce graphs or summary statistics.

6.3 Design Limitations
Patchwork’s limitations include the following, which are
topics for future work: (1) Resources cannot be shared across
Patchwork instances, leading to some underutilization of
profiling since, for example, only a single FABRIC user at
a time can mirror a specific switch port. Sharing could be
achieved by having an intermediate layer that schedules the
use of mirrored ports on behalf of more than one FABRIC
user. (2) While Patchwork has some dynamic behavior—i.e.,
port cycling that was described in Section 6.2.2—it does not
support dynamic scaling of resources. Except for mirrored
ports, all of the resources used by Patchwork are reserved at
start-up time. Adding dynamic scaling could improve Patch-
work’s performance (e.g., by taking advantage of offloading
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opportunities that become available at runtime) and flexi-
bility (e.g., by having a “nice” factor [34] for the profiler to
scale down its use of resources if the testbed is being highly
utilized by other researchers.)

7 Implementation
Patchwork runs on FABRIC as a regular experiment, and
its implementation automates the end-to-end workflow de-
scribed in Section 6. Patchwork is implemented in Python,
C, and P4. The system that cycles ports and captures frames
on FABRIC consists of 3.2KLOC of Python supported by
0.7KLOC of shell scripts, the DPDK application consists of
0.5KLOC of C, and the P4 application (that is compiled to the
Alveo FPGA NIC) consists of 0.6KLOC. The offline analysis
is done by around 1.1KLOC of Python, supported by around
350LOC of shell scripts. The visualization code—also used
for this paper’s graphs—is around 2KLOC in size.

Where possible, Patchworkwas implemented to be portable.
Currently it uses a FABRIC-specific API to acquire resources,
transfer files, and obtain telemetry. Some other testbeds have
counterparts for some of FABRIC’s features, albeit they have
far fewer network resources than FABRIC. Porting Patch-
work to other testbeds is potential future work.

8 Evaluation and Findings
This section evaluates Patchwork (Section 8.1), analyzes FAB-
RIC’s network profile that was gathered using Patchwork
over a period of 13months (Section 8.2), and discusses lessons
learnt from the deployment of Patchwork on FABRIC (Sec-
tion 8.3). Although we focus on the all-experiment mode
here, the considerations are the same for single-experiment
mode, with the additional constraint that it can only monitor
ports that are involved in the single user experiment.

8.1 Behavior and Performance
Patchwork is evaluated in terms of its behavior on FABRIC’s
federation of sites and its overhead sensitivity when captur-
ing sequences of frames of different sizes.

8.1.1 Patchwork behavior on FABRIC’s federation. Patch-
work was run on all FABRIC sites but one—EDUKY was
omitted since it is restricted for teaching use and it lacks ded-
icated NICs.We analyzed the logs generated by Patchwork as
described in Section 6.2 to determine its success rate and rea-
sons for failing. During this interval, Patchwork succeeded
in profiling all FABRIC sites in 79% of cases. In around 20% of
cases, a FABRIC site lacked resources to run Patchwork, and
in the remaining cases there was a bug in Patchwork that has
since been fixed. The time-series is graphed in Fig. 10. In this
graph, “Failed” is due to transient problems with FABRIC’s
back-end or unavailable resources in a FABRIC site (e.g. no
dedicated NICs available). For example, on the days of 10 Sept

and 11 Sept most of the failures were due to an issue in FAB-
RIC’s back-end system which we were discussing with the
FABRIC team and testing their patches. Failures on 15 Sept
were due to a different backend error. These were transient
backend issues that eventually were resolved. “Degraded” is
due to low resources available in a FABRIC site, requiring
the scaling-down of requests through back-off. “Incomplete”
refers to when Patchwork crashed.

8.1.2 Software-based capture. The default configuration of
Patchwork uses tcpdump to capture frames. tcpdump is a
mature software program that is widely tested and requires
fewer system requirements to deploy. It also provides fil-
tering and truncation through its configuration parameters
which make learning and using it simple. For these reasons,
we choose this to be the default over the DPDK implemen-
tation. We characterized the upper bound of this approach
by conducting an experiment on FABRIC during which we
generated traffic using iperf3 [23]. The listening host ran
tcpdump with a buffer memory of 32MB. tcpdump captured
incoming frames and truncated their length to 64 bytes. This
setup was able to sustain 11 Gbps of throughput between the
iperf3 client and server. tcpdump was able to capture packets
without packet loss until about 8.5 Gbps of throughput for
1500B frames.

8.1.3 Accelerator- and bypass-assisted capture. For higher
performance, Patchwork offloads filtering, truncation, sam-
pling, and packet editing logic to an Alveo FPGA card on
the FABRIC site being profiled. It also uses a custom DPDK
application that serializes frames into pcap files. This intro-
duced a new bottleneck: that of storing information arriving
at a line rate of 100Gbps into secondary storage. Frames that
bypassed the kernel’s network stack must be written to stor-
age by using the kernel’s file system. This section reports on
the host system’s behavior and performance when storing
frames into a pcap file at line rate.

Since IO access to storage takes many cycles [7], the Linux
kernel employs page caching—also called filesystem caching
to reduce the increased latency for applications. Filesystem
caching involves representing a secondary storage file into
page-sized (4KB) blocks of data. These blocks act just like
regular pages in RAM, as part of the virtual memory abstrac-
tion provided by Linux, but they are backed by a file residing
in secondary storage. For persistence, these pages must be
written back to the secondary storage at some point in time.

Linux has default system threshold parameters that dictate
when write-backs to the secondary storage from the page
cache begin and end. Two such important parameters are
the dirty_background_ratio threshold and dirty_ratio
threshold. These thresholds are defined as a percentage of
total free cache memory. We observed that the page caching
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Figure 10: Behavior of Patchwork on FABRIC over an ordinary 4-month period in 2024. This is described in Section 8.1.

mechanism is overwhelmed when frames are arriving at a
line rate of 100Gbps.

When the percentage of data in the page cache exceeds the
vm.dirty_background_ratio threshold, the kernel begins
to flush dirty page caches back to the secondary storage
asynchronously. When the RAM exceeds the dirty_ratio
threshold, the kernel blocks processes that are writing to the
page cache while the kernel flushes dirty pages back to the
secondary storage. Since the processes are blocked by the
kernel, performance is degraded since frames are lost. This
is evaluated in more detailed in Appendix B.

8.1.4 Scaling packet capture. As mentioned above, when
the system memory pressure crosses the midpoint between
vm.dirty_background_ratio and vm.dirty_ratio thresh-
olds, the filesystem cache becomes the major bottleneck.
Prior to this midpoint, the performance can be improved by
scaling the cores on the system. Another importantworkaround
is the truncation of the packet before writing it to the pcap
file. Patchwork’s DPDK program writes the first 200 bytes of
the frame to the pcap file. There is a minimum write latency
associated with this size, and therefore the more data written
per packet, the greater is this minimum latency.
We show an experiment measuring the throughput per-

formance when having a truncation length set to 200 bytes
and 64 bytes. The thresholds are set to (60:80) and the Rx
queue depth is configured to 4096. From Table 1 and Table 2,
we observe the performance improves for 64 bytes trunca-
tion, requiring fewer cores to achieve the same throughput
performance as the 200 bytes truncation.

8.2 FABRIC’s traffic profile
Patchwork was run on 69 occasions between December 2023
and December 2024 to gather data from across FABRIC. To

Table 1: 200B truncation, 60:80 threshold

Frame Size (B) Rate (Gbps) Cores Loss (%)
1514 100 5 0.67
1024 100 10 0.13
512 60 15 0.03
128 15 15 0.1

Table 2: 64B truncation, 60:80 threshold

Frame Size (B) Rate (Gbps) Cores Loss (%)
1514 100 3 0.17
1024 100 5 0.32
512 100 15 0.07
128 28 15 0.13

gather headers for analysis, the first 200 bytes was captured
for each sampled frame. Switch ports were sampled for 20
seconds at 5-minute intervals over a period of 12-24 hours.

Headers. Reading the left y-axis of Fig. 11, we see that
FABRIC sites exhibit a range of different dissected protocol
headers. Since this graph is produced by using tshark’s out-
put, layer-4 ports are often used to classify the payload that
follows, and which is counted as a separate header in Fig. 11.
This suggests that different FABRIC sites have different net-
work workload characteristics—for example, some sites are
more likely to be used for simple throughput experiments
while other sites involve experiments that feature different
application-layer headers. The duration of the profile sug-
gests that these characteristics are persistent in time across
sites.We hypothesize that this is because of researchers want-
ing to use specific pools of resource at specific sites that are
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Figure 11: Across all (anonymized) FABRIC sites, this shows
(y1-axis) the number of distinct headers observed, and (y2-
axis) deepest stack of headers observed. The sites are in the
same order between the two curves.
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Figure 12: Occurrence of protocol headers in FABRIC traffic.
Most traffic consists of Ethernet frames that carry IPv4 pack-
ets, that in turn carry TCP segments. Most traffic is tagged
using VLAN, MPLS, or both.

more suitable for their resource—for instance, some sites
have more NICs or GPUs than others.
Reading the right y-axis, we see that frames across all

FABRIC sites have a maximal header prefix consisting of be-
tween 6 and 12 headers. Some of these headers are provided
by FABRIC to isolate different researchers’ traffic. Examples
of typical encapsulations include “Ethernet / VLAN / MPLS /
MPLS / PseudoWire / Ethernet / IPv4 / TCP / TLS” and “Eth-
ernet / VLAN / MPLS / PseudoWire / Ethernet / IPv6 / SSH.”
The implication for researchers is that they do not fully con-
trol their utilization of interface MTUs in the network, since
the FABRIC underlay uses some headers for tagging. We
expect that this tagging has minimal impact on MTU usage,
since FABRIC switch interfaces are configured to support
jumbo frames throughout the network.
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Figure 13: Frequency of encountering different numbers of
flows in each 20s traffic sample.

Fig. 12 shows the occurrence of the most prevalent head-
ers across all sampled sites. Ethernet exceeds 100% because,
as we saw in the example above, Ethernet frames often
carry other Ethernet frames. We observe that network traffic
mostly consists of IPv4 packets, and only 1.93% of frames
contained IPv6 headers. Most of the observed traffic consists
of TCP streams.

Frame sizes. Across FABRIC, themost frequently-occurring
frame sizes fall into the range of: 1519-2047 bytes (74.7%),
65-127 bytes (14.15%), and 128-255 bytes (5.79%). Across dif-
ferent sites, we observed a substantial variation in frame
sizes, which is indicative of different types of network work-
loads. Often, minimum-size frames consist of payload-free
ACKs in a TCP stream: “Ethernet / VLAN / MPLS / IPv4 /
TCP.” A per-site graph of frame-size distribution is presented
in Appendix C.

Flow sizes. Recall from the start of Section 8.2 that each
sample is 20s long. Fig. 13 shows that most samples (aggre-
gated across all FABRIC sites) have packets belonging to
fewer than 3,000 distinct flows, and a handful of samples had
snippets of more than 20,000 flows. (Because of the length of
the sampling, it is unlikely that all samples captured entire
flows.) This suggests that the level of network activity of
FABRIC can vary significantly, and that this variation can af-
fect the results of experiments and their reproducibility. We
also analyzed across samples to piece together flow snippets
and aggregate their packets. In this aggregation, we found
that most flows are short—less than 102B—but some flows
were around 100GB in size. Vishwanath and Vahdat [41] dis-
cussed the importance of faithful background traffic when
evaluating systems, but in this case the background consists
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of traffic that the researchers cannot control. This suggests
the importance of stronger isolation and scheduling features
in shared network testbeds.

8.3 Deploying Patchwork on FABRIC
This section discusses the lessons learnt from deploying
a user-developed tool to a federated testbed. This tool is
deployed in two senses: (1) testbed users can use and extend
Patchwork to profile their experiments on FABRIC, (2) we
run Patchwork weekly to study the evolution of FABRIC’s
network profile to share with the community.

For the success of this research and for the uptake of Patch-
work, it was important to use as few resources as possible
on FABRIC. Otherwise, Patchwork would impede other ex-
periments from starting—and thus have less to observe. This
need for frugality motivated the development of iterative
back-off (Section 6.2.1) and port cycling (Section 6.2.2).

Continuing on the previous point, the decoupling of cap-
ture and analysis phases in Patchwork (described in Sec-
tion 6) was designed to shorten its resource leases on FABRIC.
A capture lasting 12 hours can generate tens of gigabytes.
Analyzing this data can take several days—most of this time
is taken up by Wireshark’s protocol dissectors to produce
an abstracted capture (Section 6.2.4).

This work benefited greatly from FABRIC’s resources and
interfaces. Access control was entirely left to the testbed, and
testbed resources were leveraged for this work—particularly
the port mirroring primitive, switch port statistics, and FPGA
NICs. Finally, system tuning enabled the studying and tuning
of bottlenecks, as described in Section 8.1.3.
We noticed that FABRIC’s slice allocator often struggled

when handling large slices. Specifically, it took a long time to
allocate slices in all-experiment mode. Parts of Patchwork’s
design react to and mitigate the behavior of the host testbed—
for instance, Patchwork prefers smaller slices (since they are
handled more quickly by the testbed’s allocator) and carries
out its own allocation simulations to ensure that resource
requests can always be satisfied by the testbed.
Finally, FABRIC served as a very convenient distribution

platform, and reduced the friction for other users to try Patch-
work. In past research projects, we observed that it was diffi-
cult to reliably package research prototypes for external use,
since users could encounter a wide variety of problems—for
example, users might lack dependencies, lack the version of
the compiler needed, or lack experience with building soft-
ware. Because of FABRIC’s provision of common VM images,
and the culture of scripting-up FABRIC experiments for re-
producibility, it was easy for FABRIC users to use Patchwork
without having to compile or install anything locally.

9 Conclusion and Future Work
Federated testbeds represent huge investments in infrastruc-
ture that supports research and teaching. Currently, such
testbeds only provide rudimentary primitives to capture and
analyze an experiment’s network traffic. This paper pre-
sented the first platform that profiles (captures and analyzes)
traffic in a federated network testbed. This profiler was de-
veloped by users of the FABRIC research testbed, and it has
been running on FABRIC for over a year. Using data from
that deployment, this paper presented a study of the network
profile and utilization of FABRIC.
As testbeds continue to evolve, network profiling might

one day become a standard feature in federated testbeds, and
Patchwork provides a first study of how such a profiler can
be built and used in that environment.
As an initiative to benefit the research community, it

would be useful to produce regular updates to the analysis
of FABRIC’s network profile (Section 8.2), and periodically
release anonymized traffic traces to the research community.

Future Work. Directions for future research include over-
coming the design limitations described in Section 6.3, and
porting Patchwork to run on other testbeds. Overcoming
the design limitations would involve devising a controller
that scales Patchwork resources at runtime according to the
resources available on FABRIC. Currently Patchwork is as-
signed fixed resources at start-up, and runtime scaling would
be useful during long runs if Patchwork starts with small
allocations. While it is clear how to scale up, it is not clear
what signal Patchwork could use to scale-down—it would re-
quire a new control channel from users or FABRIC’s allocator.
Porting Patchwork to run on other testbeds would involve
designing an abstraction layer to interface with APIs from
different testbeds, in order to acquire and manage testbed
resources for Patchwork.
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Figure 14: Summed latency observed during pcap storage
for accelerator- and bypass-assisted Patchwork. The x-axis
shows the percentage of free cache memory used by Patch-
work’s custom DPDK application; y-axis shows this percent-
age as RAM size; and z-axis shows the summed latencies for
the sys_writev() calls. The top figure uses 10:20 threshold,
while the bottom figure uses 20:50 threshold. These figures
are explained in Appendix B.

A Ethics
Creating FABRIC’s traffic profile involved sampling the traf-
fic of other FABRIC users, and this requires a special per-
mission on FABRIC. We obtained this permission from FAB-
RIC leadership after discussing our research goals and data-
gathering, storage, and access processes. We also submitted
an IRB request to our institution and received an exemption.

B Evaluating the storage bottleneck
Building on the description in Section 8.1.3, Fig. 14 shows the
result ofmeasuring the summed latency of the sys_writev()
calls made by the process that writes the frames to pcap
files. For these graphs, the thresholds for the two parameters
(vm.dirty_background_ratio:vm.dirty_ratio) were set
to (10:20) and (20:50). We used the bpftrace tool [1] to profile

the latency of the sys_writev() calls. These calls are made
once for every batch of 128 frames. We used a BPF hook at
the sys_enter_writev() to record the process making the
call and measures the current time in nanoseconds. Another
BPF hook at sys_exit_writev() invoked by the same pro-
cess records the current time in nanoseconds and subtracts
the earlier recorded time. This difference is the latency. We
create a log-scaled histogram of these recorded values. For
calculating the total latency in our graphs, we do not in-
clude the average case, and instead we focus more on the
cases where the latency is higher. This is because these cases
have a much greater influence in slowing down performance
and causing frames to be dropped. Thus, if the latency of a
sys_writev() falls in the [32K, 64K] ns range, then we use
64Kns (64us) as the latency value in our calculation.
This was evaluated by using DPDK Pktgen to transmit

frames at 100 Gbps and capture them using Patchwork. The
Alveo FPGA NIC runs a bitstream that was built using the
ESnet smart NIC framework, and the receiving FABRIC node
runs the DPDK pcap writer program. The host system has a
single NUMA node, 16 cores, and 128GB of RAM.

The graphs show a steep increase in latency after thresh-
old vm.dirty_background_ratio is exceeded. Surprisingly,
this increase happened before exceeding vm.dirty_ratio.
Looking into the kernel code, we found that at the midpoint
of vm.dirty_background_ratio and vm.dirty_ratio, the
writing process is throttled by the operating system. This
code confirms what the graphs are showing. The graphs
also show the importance of tuning the thresholds. When
using 21% available RAM in the 10:20 threshold case, the
summed latency is 3283ms; while for the same RAM usage
in the 20:50 threshold case, it is 13ms, which is two orders
of magnitude lower. To get an idea of the writing bottleneck,
for a sustained 100Gbps network traffic throughput, this can
be represented as 8.5GBps of traffic. For a 128GB RAM, the
free cache memory by default will be around 100GB of RAM.
With a 60:80 threshold, the bottleneck will happen at about
70% of free cache memory, i.e, at 70GB usage of free cache
memory. This implies in about 8-9 seconds we will hit a page
cache bottleneck, thus stalling the pcap writer application.
Optimizing the capture of high-throughput traffic needs to
work around this bottleneck, and generalizing this approach
is a topic for future research.

C Frame size distribution
This section expands on the analysis of frame sizes in Sec-
tion 8.2. Fig. 15 shows significant variety in frame sizes across
FABRIC sites, which is indicative of different types of work-
loads. Most sites carry a proportion of smaller packets (e.g.,
S11 and S12) and several sites are notable for carrying jumbo
frames (e.g., S3 and S7).



Patchwork: A Traffic Capture and Analysis Platform for Network Experiments on a Federated Testbed IMC ’25, October 28–31, 2025, Madison, WI, USA

S0 95.8% S1

67.8%

S2

35.5% 37.3%

S3 93.5% S4

56.4%

S5

65.1%

S6

64.8%
S7 82.5% S8 81.1% S9 95.4%

S1
0 89.3% S1
1 85.7%

S1
2 88.5% S1
3

74.2% S1
4

47.9%

S1
5

69.1% S1
6

47.5%

S1
7

45.9%

S1
8

46.5%

S1
9

84.2% S2
0

42.5%
S2

1

S2
2

62.4%

S2
3

72.1%

64
..-

12
7

..-
25

5
..-

51
1

..-
10

23
..-

15
18

..-
20

47
..-

40
95

..-
81

91
..-

10
23

9

0%

50%

100%

S2
4

62.6%

S2
5

78.7% S2
6 95.9%

S2
7

55.6%

S2
8

82.4% S2
9

68.0%

Distribution of Frame Sizes (Bytes)
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