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Abstract—Network testbeds are important tools in modern
research, and they require substantial observability by users and
operators. Observability of a testbed helps to capture transient
conditions of the testbed that might be difficult to reproduce,
and that affect the testbed’s performance or the outcomes
of user experiments. Having a programmable network profiler
helps provide this observability for the testbed’s dataplane by
summarizing the network activity on the testbed. But building
a testbed-wide profiler is non-trivial since it involves making
various kinds of technical trade-offs.

This paper introduces Patchwork: a programmable network
profiler for the FABRIC testbed. Patchwork programmatically
samples the dataplane to create a trace of its contents over
time. Unlike features like NetFlow or sFlow, Patchwork places
minimal burden on operators to provide a configurable interface
for flexible traffic sampling to the testbed’s users.

Using Patchwork, we present the first ever profile of FABRIC’s
network traffic among its sites in two continents. We discuss
both testbed-wide and site-specific traffic characteristics. We also
describe ongoing work to enrich and extend this profile to obtain
a deeper understanding of FABRIC’s traffic profile, and enable
researchers to form more detailed insights when using FABRIC.

Index Terms—FABRIC, Traffic Profiling, Network Monitoring

I. INTRODUCTION

Large network testbeds are vital tools for research because
they provide a variety and quantity of professionally-managed
resources at a scale that far exceeds what a typical university
testbed affords. Through their size and constituent hardware,
network testbeds enable research that can be evaluated more
rigorously, and which can thus be more impactful. FABRIC [1]
is an example of such a testbed. It is organized into a federation
of testbeds that are hosted by member institutions that span a
wide geographical area.

In addition to its size and hardware composition, the use-
fulness of a research testbed also increases proportionally
to its observability. A testbed is typically used for running
experiments and taking measurements, and increased observ-
ability enables a wider variety of measurements to be taken at
improved accuracy. In turn, observability supports the quality
of the research that is done on a testbed.

FABRIC provides an excellent observability framework—
the Measurement Framework [2]—that is focused on recording
measurements across a wide variety of resources with high
accuracy. Observability in this framework spans virtually
any host-based resource—including the utilization of CPU
cores, memory, and custom, experiment-specific quantities
that testbed users can choose to gather. The Measurement

Framework can also be used to capture traffic related to a
specific experiment.

Observing the testbed’s dataplane complements the existing
observability framework in FABRIC. The testbed’s dataplane
is the composition of network interfaces across the testbed,
and it can be implicitly shared by simultaneous experiments
and their resources. Gathering packets that are related to
multiple experiments provides an understanding of the type
and frequency of traffic that is crossing the shared network.

Providing dataplane observability requires substantial tech-
nical development effort. The testbed’s operator must pro-
vide testbed users with an interface into network equipment.
Testbed users would then need a system that uses this interface
and orchestrates the gathering, processing and visualizing
of traffic-related observations. Both the operator and users
need to navigate difficult technical choices and trade-offs—
including how to balance accuracy and overhead, and how to
manage different users’ competing demands on the testbed.

This paper described Patchwork, a programmable network
profiler for the FABRIC testbed. Patchwork programmatically
samples the dataplane to create a trace of its contents over
time. Unlike features like NetFlow or sFlow (§III), Patchwork
places minimal burden on operators to provide a configurable
interface for traffic sampling to testbed users. Patchwork
complements FABRIC’s Measurement Framework and builds
on FABRIC’s PortMirroring feature. Although we focus on
FABRIC (§IV) for practical prototyping, the ideas in Patch-
work could be adapted to other testbeds.

After describing Patchwork’s design and implementa-
tion (§V), we present the first ever profile of FABRIC’s
network traffic among all its available sites (§VI). At the time
the profile was made, we observed the following: (1) FABRIC
traffic mostly consisted of IPv4 packets, many of which were
related to SSH streams; (2) traffic at most FABRIC sites
exhibit a low variety of protocol headers in their traffic, but
some sites use many types of headers; (3) the distribution of
frame sizes at different FABRIC sites suggests a variety of
workloads across FABRIC’s network, and some sites carry
notably higher-throughput streams.

We also describe ongoing work (§VII) to enrich and extend
this profile to obtain a deeper understanding of FABRIC’s
traffic profile, and enable researchers to form more detailed
insights when using FABRIC.

II. MOTIVATION AND PROBLEM DEFINITION

The dataplane of a network testbed is a specialized, shared
resource that interconnects the resources in the testbed. In-



cluding the dataplane in a testbed’s observability infrastructure
provides an important service to the testbed’s operators (who
can better manage the testbed) and its users (who can better
understand the testbed’s operation when running experiments).

Use cases for dataplane observability include: (1) Under-
standing traffic composition to support diagnostics and post-
mortems—e.g., to understand problems with resource alloca-
tion or why an experiment is not being adequately reproduced.
(2) Getting a picture of flows across FABRIC to detect
short-term and long-term anomalies in the network. (3) Un-
derstanding the most network-active nodes, and what their
activity consists of, to plan for increased capacity. (4) Making
inference from background traffic [3]. (5) Validating traffic-
generation systems [4].

Observing the dataplane requires an adequate technical ca-
pability and also a management infrastructure, and this paper
describes both. For technical capability, this paper leverages
the port mirroring feature that the FABRIC testbed provides.
There are alternative approaches that could also work, and they
are described in §III.

Developing a management infrastructure requires navigating
trade-offs on how to gather and process observations. This
includes deciding whether to observe all or some traffic. And if
observing only a subset of traffic, deciding on: which specific
sites to observe, which types of traffic to observe, and at what
frequency. Further, this management infrastructure must be
accessible to users of the testbed and its existence must not
place extra burden on the operators of the testbed.

III. WHY NOT USE NETFLOW, SFLOW, IPFIX, ETC?

Patchwork currently relies on port mirroring as the sole
primitive for sampling the testbed’s dataplane. Our experience
so far is that this primitive is adequate for dataplane observ-
ability of a testbed’s network.

Alternative primitives include (1) using switch-supported
features such as NetFlow, sFlow, IPFIX—these an differ across
versions, vendors, and implementations—or (2) using network
taps to mirror this traffic—which would come at increased
expense to purchase the taps and dedicate ports on receiving
equipment. The port mirroring approach offers raw access to
the dataplane and affords plenty of control over filtering and
processing by using vendor-neutral tools.

If the testbed’s switches are upgraded, then as long as
the new switch supports port mirroring, then Patchwork will
continue working. Alternative primitives could be added to
Patchwork—including NetFlow and taps—-but that would ex-
pand the features that the testbed operator or specific FABRIC
sites must expose to users, potentially increasing their burden.

IV. BACKGROUND: FABRIC SITES

Before describing how Patchwork works in §V, this section
outlines FABRIC’s design.

FABRIC is structured into connected sites. A site consists of
a cluster of equipment, sketched in Fig. 1. This cluster contains
a switch that interlinks a number of worker machines. Each
machine hosts one or more Virtual Machines (VMs) and is
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Fig. 1: Composition of a typical FABRIC site.
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Fig. 2: Histogram from 12/11/2023 showing the distribution of
uplink ports across all FABRIC sites. Most sites have a single
uplink. The STAR site has 9 uplinks, making it an important
hub. One site was in maintenance mode, and had zero uplinks.

equipped with one or more network interface cards (NICs).
Each NIC has one or more physical ports. Each port is linked
to a dedicated port on the switch.

Sites are connected through dedicated uplink ports on the
switch—such as Uplink1 in Fig. 1. Uplink ports are linked
to infrastructure that connects FABRIC sites. As with other
links, uplinks are physically structured into two uni-directional
channels: one for transmitting (Tx) and another for receiving
(Rx) frames. Mirroring a switch port necessitates choosing
whether to mirror one or both channels of that port.

Different FABRIC sites can have a different number of
resources—workers, NICs, but also uplinks. Fig. 2 shows the
current distribution of uplinks at FABRIC sites.

Note that Fig. 2 provides a static picture of a system that



changes over time. FABRIC changes as more sites are added
and as resources are added or upgraded in sites that form part
of FABRIC. In addition to the problem formulation described
in §II and in §III, tolerance to FABRIC’s change and resource
variety is another constraint that Patchwork seeks to satisfy.

V. DESIGN AND IMPLEMENTATION OF PATCHWORK

Patchwork is a tool for observing FABRIC’s dataplane
through programmable traffic capture and processing. This
section describes how Patchwork was designed and built in
the context of FABRIC’s design.

A. Overview

To FABRIC, Patchwork appears like any other experiment.
Patchwork runs on FABRIC using the resources that the
testbed makes available to all experiments. In particular,
Patchwork creates slices that include VMs for traffic gathering
and processing, smart NICs for receiving traffic for those VMs,
and uses port mirroring at the site switch as the technical
capability (§II) that directs traffic to those NICs. In the sketch
shown in Fig. 1, Patchwork runs on Worker1 and uses one or
both of NIC1 and NIC2 for traffic gathering.

Patchwork provides a configurable management infrastruc-
ture (§II) for capturing traffic that crosses FABRIC’s data-
planes. Arbitrary ports on the switch can be mirrored, but
we currently focus on mirroring uplinks to capture inter-
site traffic. Patchwork’s configurability enables programmable
capture and processing—this includes specifying sites where
to capture, which uplinks to mirror, what types of traffic to
capture, how frequently, and how to process it. Processing
can include truncating payloads and blanking addresses.

Since a FABRIC site may have multiple uplinks (§IV),
Patchwork by default discovers the number of uplinks and
can be set to sample all of them or a subset. Constrained by
FABRIC’s design, currently we need a separate NIC to handle
each uplink. Since each NIC has two physical ports, if u is
the number of uplinks we wish to sample then we evaluate
⌈u/2⌉ to calculate the number of NICs needed. Patchwork’s
management infrastructure helps users navigate and make
these choices. With regards to multi-tenancy, since the profiler
uses its own NIC ports, it does not impact the network traffic of
other users. Each VM used for sampling uses 2 cores which
is 0.4% of average CPU availability at a site. Similarly the
RAM and secondary memory used is minimal.

B. Patchwork Implementation

FABRIC provides a Jupyter Hub environment for interact-
ing with the testbed and running experiments. Each user is
provided a Jupyter Hub server within which users can create
notebooks with cells that run Python code, parse Markdown
format, and run shell commands.

Patchwork provides a Jupyter notebook in which users can
set parameters for traffic sampling. The notebook then carries
out a number of steps that conclude with the submission
of an experiment to FABRIC. Once the experiment starts,
dataplane traffic starts to get sampled. These steps involves

querying FABRIC to discover the available sites, enumerate
their uplinks, and identify suitable NICs at each site. Based
on available resources, VMs are started to receive, sample, and
process mirrored traffic from each uplink. Captured traffic is
ultimately saved as a pcap file, which is later downloaded for
offline processing.

Once pcap files are downloaded, they are run through
another series of scripts that create a traffic profile. This profile
is based on analysis that is done using the mature protocol
dissection implementations in tshark/Wireshark, which is in-
tegrated with Patchwork’s tooling for automated analysis.

C. Using Patchwork

We now describe the typical workflow when using Patch-
work. This workflow is structured into four phases.

1) Setup phase: The Patchwork VM requests 2 CPU cores,
8GB of RAM and 35G of storage—all these parameters
are easy to change in the Patchwork notebook. Patchwork
partitions the experiment into three slices. Each slice covers
a fraction of the uplink sites. This partitioning is done to
avoid the overhead of requesting resources for all the sites
in a single operation, since that can cause a timeout in the
FABRIC backend and thus fail to allocate the resources.

2) Sampling phase: We use tcpdump to capture a sample of
the packets that arrive at the NIC port at configurable intervals.
To lessen the risk of packet drops, we set the capture buffer to
be 32MB; this can be tuned as needed. Packets are truncated
to lower capture overhead and protect user privacy. Patchwork
does not require payloads for its analysis. The truncation size
is a parameter that can be set in Patchwork.

Patchwork also creates logs at every VM to capture a variety
of network- and host-related statistics that can help us notice
and diagnose any problems. These logs are included in the
final compressed file that is gathered for offline processing.

3) Gathering phase: In parallel to the sampling phase, a
watchdog process checks for both successful and unsuccessful
termination—e.g., in case the VM ran out of storage. Upon
termination, the saved pcap files are collected and downloaded.
The time taken for the gathering phase depends on the amount
of data that is written to the pcap files on the listener VMs
during sampling, as well as on the duration of the experiment.
For runs lasting 24 hours, it took around 20 minutes to
download the tarred pcap files from the VMs.

4) Analysis phase: Once downloaded, the data is processed
by a series of scripts that abstract field details to produce
abstract representations of headers. This data is then process
by other scripts to graph the data. Fig. 3, 4 and 5, described
in §VI-B, were produced by these scripts.

VI. EVALUATION AND FINDINGS

In the experiments described in this section we ran Patch-
work to capture at all FABRIC sites, using as many uplinks
as possible.1 Captures consisted of the 200-byte prefix of each

1In some FABRIC sites we were unable to sample all uplinks because there
were insufficient NICs (§V-A).
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Fig. 3: Occurrence of protocol headers across FABRIC sites.
We observe that most traffic consists of Ethernet frames that
carry IPv4 packets, that in turn carry TCP segments. Most
traffic is overlaid by using VLAN, MPLS, or both.

frame to capture most standard header stacks. Uplinks were
sampled for 20 seconds at 5-minute intervals.

A. Performance and Overhead

Patchwork currently uses tcpdump to capture packets, and
the overhead from kernel-to-userspace transitions can con-
strain the throughput performance of Patchwork. We char-
acterized this upper bound by conducting an experiment on
FABRIC during which we generated traffic using iperf3 [5]. At
the listening host, we run tcpdump which listens for incoming
frames, truncates the length to 64 Bytes and has a buffer
memory of 32MB. With this experiment setup, we were able to
generate 11 Gbps of throughput between the iperf3 client and
server. tcpdump was able to capture packets without packet
loss until about 8.5 Gbps of throughput for minimum-size
frames. Thus we use this as our listening node’s throughput
upper bound.

B. FABRIC’s traffic profile

We created a profile of FABRIC’s dataplane by sampling all
sites during the second half of December 2023. This section
presents a profile based on a subset of that data. Because of
when we carried out this sampling, FABRIC was quieter than
normal.2 Thus we consider the current profile to be a potential
baseline and we plan to create more profiles at a different times
of the year, to observe FABRIC’s dataplane activity over time.

Fig. 3 shows the occurrence of the most prevalent headers
in traffic across all sampled sites—e.g., the graph shows that
ICMP shows up in 0.14% of all frames. We observe that
observed traffic mostly consists of IPv4 packets, and only
0.19% of frames had IPv6 headers. Most of the observed traffic
consists of TCP streams. Approximately half of those streams
during the observation period related to SSH connections.
Underlying that profile, we observe overlays that rely on
VLAN and MPLS. Around 2% of traffic consists of signalling
for routing (BGP and ISIS) or loop-avoidance (STP).

Fig. 4 shows site-specific diversity of observed headers.
For example, in the traffic from S11.2 we only observed

2The average number of active slices per day on FABRIC is 118, with a
std.dev of 61. In comparison, during the days of this research the average
active slices were 101 with a std.dev of 29.
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Fig. 4: Diversity of headers across FABRIC sites. S11.2 and
S13.1 have the least diversity (4 headers), while in traffic at
S9.1 we observed 95 different classifications of headers.

4 headers being used (e.g., Ethernet+VLAN+IPv4+TCP). The
occurrence of other headers—e.g., IPv6, FTP, etc—contributes
to a higher diversity. We observe that the observed traffic in
most FABRIC sites exhibits low header diversity, but S9 has
high header diversity across all three of its uplinks. Further
analysis is needed to understand the composition of that traffic,
and what workloads are contributing to its diversity.

We also observed significant variety in frame sizes across
FABRIC sites, which is indicative of different types of work-
loads. Fig. 5 shows the size profile for a subset of sites. We
observe that most sites carry a proportion of smaller packets—
e.g., up to 128 bytes. S5 is notable because the majority of its
traffic is in that category. Many sites carry minimum-sized
frames—e.g.S8.0. Often these frames consist of payload-
free ACKs in a TCP stream. For example, we observed one
such frame consisting of: Ethernet+VLAN+MPLS+IPv4+TCP.
Some sites are also notable for carrying larger frames—and
in the case of S0, S8.2 and S9.0 they carry extremely
large frames. Further analysis is needed to understand the
composition of that traffic and its workloads.

C. Linux interface counters

A key part of the construction of Patchwork consisted of
careful load-scaling and interpretation of OS resources, to
optimize packet capture. During the packet capture we noticed
reports of packets being dropped by the interface, despite the
data rate being much lower than 8.5 Gbps (§VI-A). We were
able to correlate this to the rx dropped counter displayed by
the ifconfig and iproute2 utilities.

Since we were not expecting packet drops, we invested
effort to understand the cause of this problem in the Linux
kernel, and this produced valuable take-aways for our future
work. To understand at which level the packets were being
dropped, we developed an XDP program [6] that copies the
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raw packet and writes it to a BPF map perfbuffer that is shared
with userspace. We then compare the packet stream as seen
by the XDP program with that seen by tcpdump. We noticed
that both streams had the same packets: thus packets were not
being dropped between the driver and the network stack.

We went through the network driver code and the docu-
mentation for Intel and Mellanox NICs, to infer the possible
reasons for rx dropped counters being incremented. In the
case of Intel, the rx dropped counter is set to the rx discards
field as reported by the hardware. rx discards is incremented
generally when packets are dropped due to lack of free rx
descriptors available. However since FABRIC uses Mellanox
ConnectX NICs as their network cards, we needed to rely on
Mellanox documentation for this specific case. Unfortunately
the documentation of ConnectX5/ConnectX6 NICs is not
public, and as a result we could not understand the hardware
register that sets the rx dropped counter.

Instead we relied on the Linux kernel’s interface statistics
documentation [7]. From it we learnt that rx dropped counter

increments when (1) the interface runs out of resources or
(2) encounters unsupported protocols or (3) when packets are
filtered out by the layer-2 handler.

Through further tests we dismissed causes (1) and (3), this
only left cause (2). In modern Linux kernels, each layer-3
handler registers itself with the kernel beforehand, so that this
operation can take place seamlessly. However if a specific
protocol is not registered, then it falls under “unsupported
protocols”—which causes the rx dropped counter to incre-
ment. One such protocol was MPLS.

We verified this finding on our local testbed by observing
the counter values when the MPLS module in the Linux kernel
image is enabled, and comparing them to the counter values
observed when the module is disabled. Since we were not
relying on the kernel network stack to handle the packets that
it was receiving—since we were only intending to sample the
traffic—then we concluded that it was safe to ignore the packet
drop counter for the low-throughput scenarios.



VII. CONCLUSION, LIMITATIONS, AND FUTURE WORK

Patchwork provide programmable profiling of FABRIC’s
dataplane and relies on FABRIC’s simple but effective port
mirroring primitive. It complements FABRIC’s powerful and
flexible Measurement Framework (§I) by focusing on observ-
ing the dataplane while experiments are taking place.

The development of Patchwork has revealed interesting
insights about (1) how to best leverage FABRIC’s resources for
dataplane observation (§V-A), (2) current limits of the gather-
ing system (§VI-A), (3) a snapshot of FABRIC’s traffic pro-
file (§VI-B), and (4) in what conditions the kernel’s network-
related error indicators provide a false positive (§VI-C).

Although it can already produce results, Patchwork is “work
in progress”. The rest of this section describes the current
limitations of Patchwork and outlines some work to improve
the system. We are working to implement these improvements
and make Patchwork available for others to use.

One key current limitation is that Patchwork cannot sample
at full line rate (§VI-A). Our listening port’s link is 100 Gbps,
but it can only receive at around 8.5 Gbps. If we mirror packets
from an uplink port that operates at a higher throughput, then
packets will be dropped at the receiving interface. The loss of
packets can lead to some imbalance in the sample. In order to
achieve a throughput closer to line rate, we are considering as
a possible solution, a sampler built atop DPDK to bypass the
kernel network stack.

Even if we can receive at 100 Gbps, since the port mirror
service can mirror both Rx and Tx traffic on the target uplink
port (§IV), at full utilization we would have 200 Gbps of traffic
being mirrored to the Rx channel of a listening port that can at
most handle 100 Gbps. In that case, packets will be dropped at
the switch. There is no way for the listening node to identify
this potential scenario without querying the counters on the
switch. Patchwork is currently unable to retrieve information
about switch resource constraints, which would help it val-
idate user-chosen parameters—for instance, by ensuring that
Patchwork is not under-resourced to sample at the full line
rate. If FABRIC switch counters are made available, then we
can use them to provide additional configuration-time and run-
time checks in Patchwork. Further the scalability of Patchwork
is currently constrained by the number of available SmartNIC
ports at each site.

In the current setup Patchwork only mirrors uplinks. Thus
it observes cross-site traffic, but does not observe traffic
travelling between workers in the same FABRIC site (§IV).
Changing Patchwork to mirror intra-site ports is straightfor-
ward, and we plan to explore this in the future.

Patchwork currently does not export or import data with
other systems. In the future, we hope to explore the integration
of Patchwork with FABRIC’s Measurement Framework to
enable FABRIC users to observe both host resources and
dataplane resources more easily. We also hope to explore the
integration with NetSage and perfSONAR for Patchwork to
consume or produce diagnostic information to better support
the observability of FABRIC users and operators into the
network infrastructure.

A current limitation of Patchwork is that it still involves
some manual steps, but we plan to automate these when the
system is more mature. The Jupyter Hub server provided
to the FABRIC user is a container instance with a volume-
mounted file system for local storage. This file system’s size is
limited to 1 GB, and this creates a bottleneck for long-duration
experiments (1 day and above) across multiple FABRIC sites
using Patchwork, since the tarred pcap files from each VM
goes well above this storage limit. In our work so far, this
necessitated a manual step of transferring a pcap download
script onto the local system, as part of the Patchwork gathering
phase. Therefore, instead of downloading the pcap files from
each VM onto the Jupyter Hub server filesystem, we download
it onto our local computer which has abundant storage.
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